Nonlocal boundary value problems for second-order nonlinear Hahn integro-difference equations with integral boundary conditions

dc.contributor.authorUmaphon Sriphanomwan
dc.contributor.authorJessada Tariboon
dc.contributor.authorNichaphat Patanarapeelert
dc.contributor.authorSotiris K Ntouyas
dc.contributor.authorThanin Sitthiwirattham
dc.contributor.correspondenceJ. Tariboon; Nonlinear Dynamic Analysis Research Center, Department of Mathematics, Faculty of Applied Science, King Mongkut�s University of Technology North Bangkok, Bangkok, 10800, Thailand; email: jessada.t@sci.kmutnb.ac.th
dc.date.accessioned2025-03-10T07:36:32Z
dc.date.available2025-03-10T07:36:32Z
dc.date.issued2017
dc.description.abstractIn this paper, we study a boundary value problem for second-order nonlinear Hahn integro-difference equations with nonlocal integral boundary conditions. Our problem contains two Hahn difference operators and a Hahn integral. The existence and uniqueness of solutions is obtained by using the Banach fixed point theorem, and the existence of at least one solution is established by using the Leray-Schauder nonlinear alternative and Krasnoselskii�s fixed point theorem. Illustrative examples are also presented to show the applicability of our results. � 2017, The Author(s).
dc.identifier.citationAdvances in Difference Equations
dc.identifier.doi10.1186/s13662-017-1228-9
dc.identifier.issn16871839
dc.identifier.scopus2-s2.0-85021063114
dc.identifier.urihttps://repository.dusit.ac.th//handle/123456789/4943
dc.languageEnglish
dc.publisherSpringer Verlag
dc.rightsAll Open Access; Gold Open Access
dc.rights.holderScopus
dc.subjectboundary value problems
dc.subjectexistence
dc.subjectfixed point theorems
dc.subjectHahn difference equations
dc.subjectuniqueness
dc.titleNonlocal boundary value problems for second-order nonlinear Hahn integro-difference equations with integral boundary conditions
dc.typeArticle
mods.location.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85021063114&doi=10.1186%2fs13662-017-1228-9&partnerID=40&md5=1bf6fa20218de2eabcd716566b2895c3
oaire.citation.issue1
oaire.citation.volume2017
Files
Collections