On the nonlocal fractional delta-nabla sum boundary value problem for sequential fractional delta-nabla sum-difference equations
dc.contributor.author | Jiraporn Reunsumrit | |
dc.contributor.author | Thanin Sitthiwirattham | |
dc.contributor.correspondence | T. Sitthiwirattham; Mathematics Department, Faculty of Science and Technology, Suan Dusit University, Bangkok, 10300, Thailand; email: thanin_sit@dusit.ac.th | |
dc.date.accessioned | 2025-03-10T07:36:05Z | |
dc.date.available | 2025-03-10T07:36:05Z | |
dc.date.issued | 2020 | |
dc.description.abstract | In this paper, we propose sequential fractional delta-nabla sum-difference equations with nonlocal fractional delta-nabla sum boundary conditions. The Banach contraction principle and the Schauder's fixed point theorem are used to prove the existence and uniqueness results of the problem. The different orders in one fractional delta differences, one fractional nabla differences, two fractional delta sum, and two fractional nabla sum are considered. Finally, we present an illustrative example. © 2020 by the authors. | |
dc.identifier.citation | Mathematics | |
dc.identifier.doi | 10.3390/math8040476 | |
dc.identifier.issn | 22277390 | |
dc.identifier.scopus | 2-s2.0-85084438409 | |
dc.identifier.uri | https://repository.dusit.ac.th//handle/123456789/4763 | |
dc.language | English | |
dc.publisher | MDPI AG | |
dc.rights | All Open Access; Gold Open Access | |
dc.rights.holder | Scopus | |
dc.subject | Existence | |
dc.subject | Nonlocal fractional delta-nabla sum boundary value problem | |
dc.subject | Sequential fractional delta-nabla sum-difference equations | |
dc.subject | Uniqueness | |
dc.title | On the nonlocal fractional delta-nabla sum boundary value problem for sequential fractional delta-nabla sum-difference equations | |
dc.type | Article | |
mods.location.url | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084438409&doi=10.3390%2fmath8040476&partnerID=40&md5=d6c1a79e93cbf5e142fba99ac25e0298 | |
oaire.citation.issue | 4 | |
oaire.citation.volume | 8 |