On the nonlocal fractional delta-nabla sum boundary value problem for sequential fractional delta-nabla sum-difference equations

dc.contributor.authorJiraporn Reunsumrit
dc.contributor.authorThanin Sitthiwirattham
dc.contributor.correspondenceT. Sitthiwirattham; Mathematics Department, Faculty of Science and Technology, Suan Dusit University, Bangkok, 10300, Thailand; email: thanin_sit@dusit.ac.th
dc.date.accessioned2025-03-10T07:36:05Z
dc.date.available2025-03-10T07:36:05Z
dc.date.issued2020
dc.description.abstractIn this paper, we propose sequential fractional delta-nabla sum-difference equations with nonlocal fractional delta-nabla sum boundary conditions. The Banach contraction principle and the Schauder's fixed point theorem are used to prove the existence and uniqueness results of the problem. The different orders in one fractional delta differences, one fractional nabla differences, two fractional delta sum, and two fractional nabla sum are considered. Finally, we present an illustrative example. © 2020 by the authors.
dc.identifier.citationMathematics
dc.identifier.doi10.3390/math8040476
dc.identifier.issn22277390
dc.identifier.scopus2-s2.0-85084438409
dc.identifier.urihttps://repository.dusit.ac.th//handle/123456789/4763
dc.languageEnglish
dc.publisherMDPI AG
dc.rightsAll Open Access; Gold Open Access
dc.rights.holderScopus
dc.subjectExistence
dc.subjectNonlocal fractional delta-nabla sum boundary value problem
dc.subjectSequential fractional delta-nabla sum-difference equations
dc.subjectUniqueness
dc.titleOn the nonlocal fractional delta-nabla sum boundary value problem for sequential fractional delta-nabla sum-difference equations
dc.typeArticle
mods.location.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85084438409&doi=10.3390%2fmath8040476&partnerID=40&md5=d6c1a79e93cbf5e142fba99ac25e0298
oaire.citation.issue4
oaire.citation.volume8
Files
Collections