On four-point fractional q-integrodifference boundary value problems involving separate nonlinearity and arbitrary fractional order

dc.contributor.authorNichaphat Patanarapeelert
dc.contributor.authorThanin Sitthiwirattham
dc.contributor.correspondenceT. Sitthiwirattham; Mathematics Department, Faculty of Science and Technology, Suan Dusit University, Bangkok, Thailand; email: thanin_sit@dusit.ac.th
dc.date.accessioned2025-03-10T07:36:32Z
dc.date.available2025-03-10T07:36:32Z
dc.date.issued2018
dc.description.abstractIn this paper, we study a sequential Caputo fractional q-integrodifference equation with fractional q-integral and Riemann�Liouville fractional q-derivative boundary value conditions. Our problem contains 2 (M+ N+ 1) different orders and six different numbers of q in derivatives and integrals. The problem contains separate nonlinear functions. To examine existence and uniqueness results of the problem, Banach�s contraction principle and the Leray�Schauder nonlinear alternative are employed. An illustrative example is also provided. � 2018, The Author(s).
dc.identifier.citationBoundary Value Problems
dc.identifier.doi10.1186/s13661-018-0962-6
dc.identifier.issn16872762
dc.identifier.scopus2-s2.0-85044572936
dc.identifier.urihttps://repository.dusit.ac.th//handle/123456789/4940
dc.languageEnglish
dc.publisherSpringer International Publishing
dc.rightsAll Open Access; Gold Open Access
dc.rights.holderScopus
dc.subjectExistence
dc.subjectq-derivative
dc.subjectq-integral
dc.subjectq-integrodifference equation
dc.titleOn four-point fractional q-integrodifference boundary value problems involving separate nonlinearity and arbitrary fractional order
dc.typeArticle
mods.location.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85044572936&doi=10.1186%2fs13661-018-0962-6&partnerID=40&md5=0b79da8241ecf5f4cade4d2a0b252979
oaire.citation.issue1
oaire.citation.volume2018
Files
Collections