Preparation and Adsorption Properties of a Biosorbent from Banana Peel for Use as Natural Vitamin Beads in Cosmetic Products

Default Image
Date
2022
ISBN
Journal Title
Journal ISSN
Volume Title
Resource Type
Article
Publisher
Research and Development Institute Suan Dusit University
Journal Title
Preparation and Adsorption Properties of a Biosorbent from Banana Peel for Use as Natural Vitamin Beads in Cosmetic Products
Recommended by
Abstract
The purpose of this research was to produce natural vitamin beads using a biosorbent from banana peel as an alternative to plastic vitamin beads for use in cosmetic products. The new biosorbents could be prepared by an extraction process in combination with a hydrothermal technique and physical processing. The biosorbent material has high fiber content, up to 45.25% by weight, particle sizes in the range of 10-160 _m, with a specific surface area of 21.5 m2/g and a point of zero charge at pH 6.83. It has a high cellulose crystallinity index (Icr) equal to 59.2%. It could be manufactured with a yield of 8.85%. The study on the adsorption equilibrium of this biosorbent material showed that the Langmuir isotherm fits better for the adsorption process (R2 = 0.9912) than the Freundlich isotherm (R2 = 0.9532) which presented a monolayer surface adsorption mechanism confirmed by XRD of vitamin C from released solution. The biosorbent from banana peel has an effective adsorption capacity for vitamin C (5% solution) of 545 mg/g and the release efficiency of vitamin C was 80% in water. In addition, an increase of adsorption capacity from 27 to 50 ¡C showed that the adsorption reaction between the biosorbent and vitamin C was endothermic. We have concluded that biosorbent from banana peel can be prepared by a hydrothermal method that is energy-efficient and environmentally friendly. This biosorbent material can be used as a natural alternative to polyethylene beads for vitamin C release in cosmetic products for antioxidant effect. The product from this research is a new category that combines natural materials with active ingredients to be used in cosmetic applications to ensure health safety and environmental protection. © 2022, Research and Development Institute Suan Dusit University. All rights reserved.
Description
Citation
Journal of Food Health and Bioenvironmental Science
View online resources
Collections