Durian cultivar recognition using discriminant function

dc.contributor.authorFuangfar Pensiri
dc.contributor.authorPorawat Visutsak
dc.date.accessioned2025-03-10T07:36:32Z
dc.date.available2025-03-10T07:36:32Z
dc.date.issued2017
dc.description.abstractThe distinction of the Durian Cultivar is its physical characteristics such as smell, thorn's color, the resonant sound when knocking the husk. This research study which characteristics can classify the two popular Durian Cultivar; 'Chanee' and 'Monthong'. The array of thorns in vertical, horizontal and diagonal and the geometric lines at the thorn's bases; rectangular, pentagon, hexagon and heptagon were the features used in this study. The process starts with Durian image edge detection to obtain the outline for identifying the position of thorn's peaks and the geometric outlines. The attributes are analyzed by the Linear Discriminant Analysis Method. The experimental results show that Durian Cultivar can be classified according to the thorn's array in vertical and horizontal. The results provide the efficient performance of classifier. The accuracy of the discriminative model is 94.44%. � 2017 IEEE.
dc.identifier.citationProceeding of 2017 2nd International Conference on Information Technology, INCIT 2017
dc.identifier.doi10.1109/INCIT.2017.8257887
dc.identifier.isbn978-153861431-0
dc.identifier.scopus2-s2.0-85049477335
dc.identifier.urihttps://repository.dusit.ac.th//handle/123456789/4944
dc.languageEnglish
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.rights.holderScopus
dc.subjectdiscriminant function
dc.subjectdurian cultivar
dc.subjectdurian's thorn recognition
dc.subjectlinear discriminant analysis
dc.subjectpattern recognition
dc.titleDurian cultivar recognition using discriminant function
dc.typeConference paper
mods.location.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85049477335&doi=10.1109%2fINCIT.2017.8257887&partnerID=40&md5=f4204d9040d926740703ea5b11762e07
oaire.citation.endPage5
oaire.citation.startPage1
oaire.citation.volume2018-January
Files
Collections