On some SimpsonÕs and NewtonÕs type of inequalities in multiplicative calculus with applications
dc.contributor.author | Saowaluck Chasreechai | |
dc.contributor.author | Muhammad Aamir Ali | |
dc.contributor.author | Surapol Naowarat | |
dc.contributor.author | Thanin Sitthiwirattham | |
dc.contributor.author | Kamsing Nonlaopon | |
dc.contributor.correspondence | K. Nonlaopon; Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand; email: nkamsi@kku.ac.th | |
dc.date.accessioned | 2025-03-10T07:34:45Z | |
dc.date.available | 2025-03-10T07:34:45Z | |
dc.date.issued | 2023 | |
dc.description.abstract | In this paper, we establish an integral equality involving a multiplicative differentiable function for the multiplicative integral. Then, we use the newly established equality to prove some new SimpsonÕs and NewtonÕs inequalities for multiplicative differentiable functions. Finally, we give some mathematical examples to show the validation of newly established inequalities. © 2023 the Author(s), licensee AIMS Press. | |
dc.identifier.citation | AIMS Mathematics | |
dc.identifier.doi | 10.3934/math.2023193 | |
dc.identifier.issn | 24736988 | |
dc.identifier.scopus | 2-s2.0-85143206679 | |
dc.identifier.uri | https://repository.dusit.ac.th//handle/123456789/4579 | |
dc.language | English | |
dc.publisher | American Institute of Mathematical Sciences | |
dc.rights | All Open Access; Gold Open Access | |
dc.rights.holder | Scopus | |
dc.subject | convex functions | |
dc.subject | multiplicative calculus | |
dc.subject | NewtonÕs inequalities | |
dc.subject | SimpsonÕs inequalities | |
dc.title | On some SimpsonÕs and NewtonÕs type of inequalities in multiplicative calculus with applications | |
dc.type | Article | |
mods.location.url | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85143206679&doi=10.3934%2fmath.2023193&partnerID=40&md5=35fde54912243be7232c9bf400c684d4 | |
oaire.citation.endPage | 3896 | |
oaire.citation.issue | 2 | |
oaire.citation.startPage | 3885 | |
oaire.citation.volume | 8 |