On some SimpsonÕs and NewtonÕs type of inequalities in multiplicative calculus with applications

dc.contributor.authorSaowaluck Chasreechai
dc.contributor.authorMuhammad Aamir Ali
dc.contributor.authorSurapol Naowarat
dc.contributor.authorThanin Sitthiwirattham
dc.contributor.authorKamsing Nonlaopon
dc.contributor.correspondenceK. Nonlaopon; Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand; email: nkamsi@kku.ac.th
dc.date.accessioned2025-03-10T07:34:45Z
dc.date.available2025-03-10T07:34:45Z
dc.date.issued2023
dc.description.abstractIn this paper, we establish an integral equality involving a multiplicative differentiable function for the multiplicative integral. Then, we use the newly established equality to prove some new SimpsonÕs and NewtonÕs inequalities for multiplicative differentiable functions. Finally, we give some mathematical examples to show the validation of newly established inequalities. © 2023 the Author(s), licensee AIMS Press.
dc.identifier.citationAIMS Mathematics
dc.identifier.doi10.3934/math.2023193
dc.identifier.issn24736988
dc.identifier.scopus2-s2.0-85143206679
dc.identifier.urihttps://repository.dusit.ac.th//handle/123456789/4579
dc.languageEnglish
dc.publisherAmerican Institute of Mathematical Sciences
dc.rightsAll Open Access; Gold Open Access
dc.rights.holderScopus
dc.subjectconvex functions
dc.subjectmultiplicative calculus
dc.subjectNewtonÕs inequalities
dc.subjectSimpsonÕs inequalities
dc.titleOn some SimpsonÕs and NewtonÕs type of inequalities in multiplicative calculus with applications
dc.typeArticle
mods.location.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85143206679&doi=10.3934%2fmath.2023193&partnerID=40&md5=35fde54912243be7232c9bf400c684d4
oaire.citation.endPage3896
oaire.citation.issue2
oaire.citation.startPage3885
oaire.citation.volume8
Files
Collections