Existence results of sequential fractional Caputo sum-difference boundary value problem
dc.contributor.author | Chanisara Metpattarahiran | |
dc.contributor.author | Thitiporn Linitda | |
dc.contributor.author | Thanin Sitthiwirattham | |
dc.contributor.correspondence | T. Linitda; Mathematics Department, Faculty of Science and Technology, Suan Dusit University, Bangkok, 10300, Thailand; email: thitiporn_lin@dusit.ac.th | |
dc.date.accessioned | 2025-03-10T07:35:06Z | |
dc.date.available | 2025-03-10T07:35:06Z | |
dc.date.issued | 2022 | |
dc.description.abstract | In this article, we study the existence and uniqueness results for a sequential nonlinear Caputo fractional sum-difference equation with fractional difference boundary conditions by using the Banach contraction principle and SchaeferÕs fixed point theorem. Furthermore, we also show the existence of a positive solution. Our problem contains different orders and four fractional difference operators. Finally, we present an example to display the importance of these results. © 2022 the Author(s), licensee AIMS Press. | |
dc.identifier.citation | AIMS Mathematics | |
dc.identifier.doi | 10.3934/math.2022829 | |
dc.identifier.issn | 24736988 | |
dc.identifier.scopus | 2-s2.0-85131901523 | |
dc.identifier.uri | https://repository.dusit.ac.th//handle/123456789/4652 | |
dc.language | English | |
dc.publisher | American Institute of Mathematical Sciences | |
dc.rights | All Open Access; Gold Open Access | |
dc.rights.holder | Scopus | |
dc.subject | boundary value problem | |
dc.subject | existence | |
dc.subject | fractional sum-difference equations | |
dc.subject | uniqueness | |
dc.title | Existence results of sequential fractional Caputo sum-difference boundary value problem | |
dc.type | Article | |
mods.location.url | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85131901523&doi=10.3934%2fmath.2022829&partnerID=40&md5=d729e23a7e3813b4f49dd62caae0dacc | |
oaire.citation.endPage | 15137 | |
oaire.citation.issue | 8 | |
oaire.citation.startPage | 15120 | |
oaire.citation.volume | 7 |