On Generalization of Different Integral Inequalities for Harmonically Convex Functions

dc.contributor.authorJiraporn Reunsumrit
dc.contributor.authorMiguel J. Vivas-Cortez
dc.contributor.authorMuhammad Aamir Ali
dc.contributor.authorThanin Sitthiwirattham
dc.contributor.correspondenceM.J. Vivas-Cortez; Escuela de Ciencias Matem‡ticas y F’sicas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Cat—lica del Ecuador, Quito, Av. 12 de Octubre 1076, Apartado, 17-01-2184, Ecuador; email: mjvivas@puce.edu.ec
dc.date.accessioned2025-03-10T07:35:06Z
dc.date.available2025-03-10T07:35:06Z
dc.date.issued2022
dc.description.abstractIn this study, we first prove a parameterized integral identity involving differentiable functions. Then, for differentiable harmonically convex functions, we use this result to establish some new inequalities of a midpoint type, trapezoidal type, and Simpson type. Analytic inequalities of this type, as well as the approaches for solving them, have applications in a variety of domains where symmetry is important. Finally, several particular cases of recently discovered results are discussed, as well as applications to the special means of real numbers. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
dc.identifier.citationSymmetry
dc.identifier.doi10.3390/sym14020302
dc.identifier.issn20738994
dc.identifier.scopus2-s2.0-85124101556
dc.identifier.urihttps://repository.dusit.ac.th//handle/123456789/4597
dc.languageEnglish
dc.publisherMDPI
dc.rightsAll Open Access; Gold Open Access
dc.rights.holderScopus
dc.subjectHarmonically convex functions
dc.subjectMidpoint and trapezoidal inequality
dc.subjectSimpsonÕs inequality
dc.titleOn Generalization of Different Integral Inequalities for Harmonically Convex Functions
dc.typeArticle
mods.location.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85124101556&doi=10.3390%2fsym14020302&partnerID=40&md5=e470273cac8f3902a6c4f4541c899deb
oaire.citation.issue2
oaire.citation.volume14
Files
Collections