On Generalization of Different Integral Inequalities for Harmonically Convex Functions
dc.contributor.author | Jiraporn Reunsumrit | |
dc.contributor.author | Miguel J. Vivas-Cortez | |
dc.contributor.author | Muhammad Aamir Ali | |
dc.contributor.author | Thanin Sitthiwirattham | |
dc.contributor.correspondence | M.J. Vivas-Cortez; Escuela de Ciencias Matem‡ticas y F’sicas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Cat—lica del Ecuador, Quito, Av. 12 de Octubre 1076, Apartado, 17-01-2184, Ecuador; email: mjvivas@puce.edu.ec | |
dc.date.accessioned | 2025-03-10T07:35:06Z | |
dc.date.available | 2025-03-10T07:35:06Z | |
dc.date.issued | 2022 | |
dc.description.abstract | In this study, we first prove a parameterized integral identity involving differentiable functions. Then, for differentiable harmonically convex functions, we use this result to establish some new inequalities of a midpoint type, trapezoidal type, and Simpson type. Analytic inequalities of this type, as well as the approaches for solving them, have applications in a variety of domains where symmetry is important. Finally, several particular cases of recently discovered results are discussed, as well as applications to the special means of real numbers. © 2022 by the authors. Licensee MDPI, Basel, Switzerland. | |
dc.identifier.citation | Symmetry | |
dc.identifier.doi | 10.3390/sym14020302 | |
dc.identifier.issn | 20738994 | |
dc.identifier.scopus | 2-s2.0-85124101556 | |
dc.identifier.uri | https://repository.dusit.ac.th//handle/123456789/4597 | |
dc.language | English | |
dc.publisher | MDPI | |
dc.rights | All Open Access; Gold Open Access | |
dc.rights.holder | Scopus | |
dc.subject | Harmonically convex functions | |
dc.subject | Midpoint and trapezoidal inequality | |
dc.subject | SimpsonÕs inequality | |
dc.title | On Generalization of Different Integral Inequalities for Harmonically Convex Functions | |
dc.type | Article | |
mods.location.url | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85124101556&doi=10.3390%2fsym14020302&partnerID=40&md5=e470273cac8f3902a6c4f4541c899deb | |
oaire.citation.issue | 2 | |
oaire.citation.volume | 14 |