A NEW q-HERMITE-HADAMARD'S INEQUALITY AND ESTIMATES FOR MIDPOINT TYPE INEQUALITIES FOR CONVEX FUNCTIONS

dc.contributor.authorThanin Sitthiwirattham
dc.contributor.authorMuhammad Aamir Ali
dc.contributor.authorAsghar Ali
dc.contributor.authorHŸseyin Budak
dc.contributor.correspondenceM.A. Ali; Jiangsu Key Laboratory of NSLSCS, School of Mathematical Sciences, Nanjing Normal University, 210023, China; email: mahr.muhammad.aamir@gmail.com
dc.date.accessioned2025-03-10T07:34:45Z
dc.date.available2025-03-10T07:34:45Z
dc.date.issued2023
dc.description.abstractThis paper proves a new q-Hermite-Hadamard inequality for convex functions using quantum integrals. We also prove some new midpoint-type inequalities for q-differentiable convex functions. Moreover, we present some examples to illustrate our established results, supplemented with graphs. © (2023) Miskolc University Press
dc.identifier.citationMiskolc Mathematical Notes
dc.identifier.doi10.18514/MMN.2023.4200
dc.identifier.issn17872405
dc.identifier.scopus2-s2.0-85178124226
dc.identifier.urihttps://repository.dusit.ac.th//handle/123456789/4558
dc.languageEnglish
dc.publisherUniversity of Miskolc
dc.rightsAll Open Access; Bronze Open Access
dc.rights.holderScopus
dc.subjectconvex functions
dc.subjectHermite-Hadamard inequality
dc.subjectmidpoint inequalities
dc.titleA NEW q-HERMITE-HADAMARD'S INEQUALITY AND ESTIMATES FOR MIDPOINT TYPE INEQUALITIES FOR CONVEX FUNCTIONS
dc.typeArticle
mods.location.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85178124226&doi=10.18514%2fMMN.2023.4200&partnerID=40&md5=a0e89d8ee1555d3fd0be8838cccc8756
oaire.citation.endPage1567
oaire.citation.issue3
oaire.citation.startPage1555
oaire.citation.volume24
Files
Collections