Analysis of a discrete mathematical COVID-19 model

dc.contributor.authorThanin Sitthiwirattham
dc.contributor.authorAnwar Zeb
dc.contributor.authorSaowaluck Chasreechai
dc.contributor.authorZohreh Eskandari
dc.contributor.authorMouhcine Tilioua
dc.contributor.authorSalih Djilali
dc.contributor.correspondenceS. Djilali; Department of Mathematics, Faculty of Exact Sciences and Computer Science, Hassiba Benbouali University, Chlef, Algeria; email: s.djilali@univ-chlef.dz
dc.date.accessioned2025-03-10T07:35:29Z
dc.date.available2025-03-10T07:35:29Z
dc.date.issued2021
dc.description.abstractTo describe the main propagation of the COVID-19 and has to find the control for the rapid spread of this viral disease in real life, in current manuscript a discrete form of the SEIR model is discussed. The main aim of this is to describe the viral disease in simplest way and the basic properties that are related with the nature of curves for susceptible and infected individuals are discussed here. The elementary numerical examples are given by using the real data of India and Algeria. © 2021 The Author(s)
dc.identifier.citationResults in Physics
dc.identifier.doi10.1016/j.rinp.2021.104668
dc.identifier.issn22113797
dc.identifier.scopus2-s2.0-85112861442
dc.identifier.urihttps://repository.dusit.ac.th//handle/123456789/4715
dc.languageEnglish
dc.publisherElsevier B.V.
dc.rightsAll Open Access; Gold Open Access; Green Open Access
dc.rights.holderScopus
dc.subjectBifurcation
dc.subjectDifference equations
dc.subjectDiscrete models
dc.subjectInfected curve
dc.subjectMathematical COVID-19 model
dc.subjectNumerical solution
dc.titleAnalysis of a discrete mathematical COVID-19 model
dc.typeArticle
mods.location.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85112861442&doi=10.1016%2fj.rinp.2021.104668&partnerID=40&md5=9f6cf24cce8398074c698cb93f3e4f2e
oaire.citation.volume28
Files
Collections