Swarm diversity based text summarization

dc.contributor.authorMohammed Salem Binwahlan
dc.contributor.authorNaomie Salim
dc.contributor.authorLadda Suanmali
dc.contributor.correspondenceM. S. Binwahlan; Faculty of Computer Science and Information Systems, Universiti Teknologi Malaysia, Skudai, Johor 81310, Malaysia; email: moham2007med@yahoo.com
dc.date.accessioned2025-03-10T07:38:07Z
dc.date.available2025-03-10T07:38:07Z
dc.date.issued2009
dc.description.abstractAutomatic text summarization systems aim to make their created summaries closer to human summaries. The summary creation under the condition of the redundancy and the summary length limitation is a challenge problem. The automatic text summarization system which is built based on exploiting of the advantages of different techniques in form of an integrated model could produce a good summary for the original document. In this paper, we introduced an integrated model for automatic text summarization problem; we tried to exploit different techniques advantages in building of our model like advantage of diversity based method which can filter the similar sentences and select the most diverse ones and advantage of the differentiation between the most important features and less important using swarm based method. The experimental results showed that our model got the best performance over all methods used in this study. © 2009 Springer-Verlag Berlin Heidelberg.
dc.identifier.citationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.identifier.doi10.1007/978-3-642-10684-2_24
dc.identifier.isbn364210682X; 978-364210682-8
dc.identifier.issn16113349
dc.identifier.scopus2-s2.0-76249095452
dc.identifier.urihttps://repository.dusit.ac.th//handle/123456789/5046
dc.languageEnglish
dc.rights.holderScopus
dc.subjectBinary tree
dc.subjectDiversity
dc.subjectMMI
dc.subjectSummarization
dc.subjectSummary
dc.subjectSwarm
dc.titleSwarm diversity based text summarization
dc.typeConference paper
mods.location.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-76249095452&doi=10.1007%2f978-3-642-10684-2_24&partnerID=40&md5=4d5b5cfba9c5297fb4d07eae06533978
oaire.citation.endPage225
oaire.citation.issuePART 2
oaire.citation.startPage216
oaire.citation.volume5864 LNCS
Files
Collections