A New Latex Price Forecasting Model to Reduce the Risk of Rubber Overproduction in Thailand

dc.contributor.authorJitian Xiao
dc.contributor.authorPanida Subsorn
dc.date.accessioned2025-03-10T07:37:40Z
dc.date.available2025-03-10T07:37:40Z
dc.date.issued2012
dc.description.abstractOne of the key areas in risk management in the public rubber industry in Thailand (PARIT) is to accurately forecast rubber latex prices thus to adjust rubber production in a timely manner. Accurately forecasting rubber latex price may not only reduce risks of overproduction and costs of over stocking, but also respond promptly and directly to global market thus improve in gaining higher sales in the competitive rubber marketing environment. This chapter presents a rubber latex price forecasting model, with three variations, i.e., one-year prediction, 6-month prediction and 4-month prediction, each embedding with either non-neural or neural network training techniques. The model is validated using actual rubber latex prices trend data, which in turn compared with experimental forecasting results to determine forecasting accuracy and the best-fitting model for policy makers in PARIT. © Springer-Verlag Berlin Heidelberg 2012.
dc.identifier.citationIntelligent Systems Reference Library
dc.identifier.doi10.1007/978-3-642-25755-1_10
dc.identifier.isbn978-364225754-4
dc.identifier.issn18684408
dc.identifier.scopus2-s2.0-84885463097
dc.identifier.urihttps://repository.dusit.ac.th//handle/123456789/4974
dc.languageEnglish
dc.rights.holderScopus
dc.subjectForecast
dc.subjectLatex price
dc.subjectNeural network training techniques
dc.subjectRisk management
dc.titleA New Latex Price Forecasting Model to Reduce the Risk of Rubber Overproduction in Thailand
dc.typeArticle
mods.location.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84885463097&doi=10.1007%2f978-3-642-25755-1_10&partnerID=40&md5=a34bb45b512ffc54d241971649eec92a
oaire.citation.endPage203
oaire.citation.startPage191
oaire.citation.volume33
Files
Collections