A new version of (p, q) -HermiteÐHadamardÕs midpoint and trapezoidal inequalities via special operators in (p, q) -calculus

dc.contributor.authorThanin Sitthiwirattham
dc.contributor.authorMuhammad Aamir Ali
dc.contributor.authorHŸseyin Budak
dc.contributor.authorSina Etemad
dc.contributor.authorShahram Rezapour
dc.contributor.correspondenceS. Rezapour; Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran; email: sh.rezapour@azaruniv.ac.ir
dc.date.accessioned2025-03-10T07:35:06Z
dc.date.available2025-03-10T07:35:06Z
dc.date.issued2022
dc.description.abstractIn this paper, we conduct a research on a new version of the (p, q) -HermiteÐHadamard inequality for convex functions in the framework of postquantum calculus. Moreover, we derive several estimates for (p, q) -midpoint and (p, q) -trapezoidal inequalities for special (p, q) -differentiable functions by using the notions of left and right (p, q) -derivatives. Our newly obtained inequalities are extensions of some existing inequalities in other studies. Lastly, we consider some mathematical examples for some (p, q) -functions to confirm the correctness of newly established results. © 2022, The Author(s).
dc.identifier.citationBoundary Value Problems
dc.identifier.doi10.1186/s13661-022-01665-3
dc.identifier.issn16872762
dc.identifier.scopus2-s2.0-85141630503
dc.identifier.urihttps://repository.dusit.ac.th//handle/123456789/4620
dc.languageEnglish
dc.publisherSpringer Science and Business Media Deutschland GmbH
dc.rightsAll Open Access; Gold Open Access
dc.rights.holderScopus
dc.subject(p, q) -calculus
dc.subject(p, q) -HermiteÐHadamard inequality
dc.subjectConvex functions
dc.subjectq-calculus
dc.titleA new version of (p, q) -HermiteÐHadamardÕs midpoint and trapezoidal inequalities via special operators in (p, q) -calculus
dc.typeArticle
mods.location.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85141630503&doi=10.1186%2fs13661-022-01665-3&partnerID=40&md5=936edab1b747612c894f72e981a3f0b3
oaire.citation.issue1
oaire.citation.volume2022
Files
Collections