Some new simpsonÕs and newtonÕs formulas type inequalities for convex functions in quantum calculus
dc.contributor.author | Pimchana Siricharuanun | |
dc.contributor.author | Samet Erden | |
dc.contributor.author | Muhammad Aamir Ali | |
dc.contributor.author | HŸseyin Budak | |
dc.contributor.author | Saowaluck Chasreechai | |
dc.contributor.author | Thanin Sitthiwirattham | |
dc.contributor.correspondence | M.A. Ali; Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, 210023, China; email: mahr.muhammad.aamir@gmail.com; T. Sitthiwirattham; Mathematics Department, Faculty of Science and Technology, Suan Dusit University, Bangkok, 10300, Thailand; email: thanin_sit@dusit.ac.th | |
dc.date.accessioned | 2025-03-10T07:35:28Z | |
dc.date.available | 2025-03-10T07:35:28Z | |
dc.date.issued | 2021 | |
dc.description.abstract | In this paper, using the notions of q_ 2-quantum integral and q_ 2-quantum derivative, we present some new identities that enable us to obtain new quantum SimpsonÕs and quantum NewtonÕs type inequalities for quantum differentiable convex functions. This paper, in particular, generalizes and expands previous findings in the field of quantum and classical integral inequalities obtained by various authors. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. | |
dc.identifier.citation | Mathematics | |
dc.identifier.doi | 10.3390/math9161992 | |
dc.identifier.issn | 22277390 | |
dc.identifier.scopus | 2-s2.0-85113585628 | |
dc.identifier.uri | https://repository.dusit.ac.th//handle/123456789/4695 | |
dc.language | English | |
dc.publisher | MDPI AG | |
dc.rights | All Open Access; Gold Open Access | |
dc.rights.holder | Scopus | |
dc.subject | Convex functions | |
dc.subject | NewtonÕs inequalities | |
dc.subject | Quantum calculus | |
dc.subject | SimpsonÕs inequalities | |
dc.title | Some new simpsonÕs and newtonÕs formulas type inequalities for convex functions in quantum calculus | |
dc.type | Article | |
mods.location.url | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85113585628&doi=10.3390%2fmath9161992&partnerID=40&md5=379e3706c30bc186267f50bd86ddfef6 | |
oaire.citation.issue | 16 | |
oaire.citation.volume | 9 |