RiemannÐLiouville Fractional NewtonÕs Type Inequalities for Differentiable Convex Functions

dc.contributor.authorThanin Sitthiwirattham
dc.contributor.authorKamsing Nonlaopon
dc.contributor.authorMuhammad Aamir Ali
dc.contributor.authorHŸseyin Budak
dc.contributor.correspondenceK. Nonlaopon; Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand; email: nkamsi@kku.ac.th
dc.date.accessioned2025-03-10T07:35:06Z
dc.date.available2025-03-10T07:35:06Z
dc.date.issued2022
dc.description.abstractIn this paper, we prove some new NewtonÕs type inequalities for differentiable convex functions through the well-known RiemannÐLiouville fractional integrals. Moreover, we prove some inequalities of RiemannÐLiouville fractional NewtonÕs type for functions of bounded variation. It is also shown that the newly established inequalities are the extension of comparable inequalities inside the literature. Finally, we give some examples with graphs and show the validity of newly established inequalities. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
dc.identifier.citationFractal and Fractional
dc.identifier.doi10.3390/fractalfract6030175
dc.identifier.issn25043110
dc.identifier.scopus2-s2.0-85127553397
dc.identifier.urihttps://repository.dusit.ac.th//handle/123456789/4616
dc.languageEnglish
dc.publisherMDPI
dc.rightsAll Open Access; Gold Open Access
dc.rights.holderScopus
dc.subjectconvex functions
dc.subjectfractional calculus
dc.subjectSimpsonÕs 3/8 formula
dc.titleRiemannÐLiouville Fractional NewtonÕs Type Inequalities for Differentiable Convex Functions
dc.typeArticle
mods.location.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85127553397&doi=10.3390%2ffractalfract6030175&partnerID=40&md5=5fbfc2ed2b6c61b53ecd9148b3ebb435
oaire.citation.issue3
oaire.citation.volume6
Files
Collections