COVID-19 MODELLING WITH SQUARE ROOT SUSCEPTIBLE-INFECTED INTERACTION

dc.contributor.authorNadia Gul
dc.contributor.authorAnwar Zeb
dc.contributor.authorSalih Djilali
dc.contributor.authorMazz Ullah
dc.contributor.authorZohreh Eskandari
dc.contributor.authorThitiporn Linitda
dc.contributor.correspondenceA. Zeb; Department of Mathematics, COMSATS University Islamabad, Abbottabad, Pakistan; email: thitiporn_lin@dusit.ac.th; T. Linitda; Mathematics Department, Faculty of Science and Technology, Suan Dusit University, Bangkok, Thailand; email: anwar@cuiatd.edu.pk
dc.date.accessioned2025-03-10T07:34:45Z
dc.date.available2025-03-10T07:34:45Z
dc.date.issued2023
dc.description.abstractWe propose a COVID-19 mathematical model related to functional shape with square root susceptible-infected interaction. Using the Hurwitz criterion and then a graph theoretical-method for the construction of a Lyapunov function, we discuss both local and global stability. The analytical solution of the system is obtained in a special case. A non-standard finite difference scheme is then developed with the aim to obtain a proper discrete-time version of the model. Simulations show a good agreement between the proposed discretization and the results given by standard numerical methods. © 2023 Society of Thermal Engineers of Serbia Published by the Vin_a Institute of Nuclear Sciences, Belgrade, Serbia. This is an open access article distributed under the CC BY-NC-ND 4.0 terms and conditions
dc.identifier.citationThermal Science
dc.identifier.doi10.2298/TSCI23S1323G
dc.identifier.issn3549836
dc.identifier.scopus2-s2.0-85163105751
dc.identifier.urihttps://repository.dusit.ac.th//handle/123456789/4572
dc.languageEnglish
dc.publisherSerbian Society of Heat Transfer Engineers
dc.rightsAll Open Access; Bronze Open Access
dc.rights.holderScopus
dc.subjectCOVID model
dc.subjectnumerical solution
dc.subjectsquare-root function
dc.subjectstability analysis non-standard finite difference scheme
dc.titleCOVID-19 MODELLING WITH SQUARE ROOT SUSCEPTIBLE-INFECTED INTERACTION
dc.typeArticle
mods.location.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85163105751&doi=10.2298%2fTSCI23S1323G&partnerID=40&md5=9b99ee73fa078210e4951b04c54ad87c
oaire.citation.endPage332
oaire.citation.issueSpecial Issue 1
oaire.citation.startPage323
oaire.citation.volume27
Files
Collections