On some new simpsonÕs formula type inequalities for convex functions in post-quantum calculus

dc.contributor.authorMiguel J. Vivas-Cortez
dc.contributor.authorMuhammad Aamir Ali
dc.contributor.authorShahid Qaisar
dc.contributor.authorIfra Bashir Sial
dc.contributor.authorSinchai Jansem
dc.contributor.authorAbdul Mateen
dc.contributor.correspondenceM.J. Vivas-Cortez; Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Cat—lica del Ecuador, Escuela de Ciencias Matem‡ticas y F’sicas, Quito, Av. 12 de Octubre 1076, Apartado, 17-01-2184, Ecuador; email: mjvivas@puce.edu.ec; M.A. Ali; Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, 210023, China; email: mahr.muhammad.aamir@gmail.com
dc.date.accessioned2025-03-10T07:35:28Z
dc.date.available2025-03-10T07:35:28Z
dc.date.issued2021
dc.description.abstractIn this work, we prove a new (p, q)-integral identity involving a (p, q)-derivative and (p, q)-integral. The newly established identity is then used to show some new SimpsonÕs formula type inequalities for (p, q)-differentiable convex functions. Finally, the newly discovered results are shown to be refinements of comparable results in the literature. Analytic inequalities of this type, as well as the techniques used to solve them, have applications in a variety of fields where symmetry is important. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
dc.identifier.citationSymmetry
dc.identifier.doi10.3390/sym13122419
dc.identifier.issn20738994
dc.identifier.scopus2-s2.0-85121500088
dc.identifier.urihttps://repository.dusit.ac.th//handle/123456789/4700
dc.languageEnglish
dc.publisherMDPI
dc.rightsAll Open Access; Gold Open Access
dc.rights.holderScopus
dc.subjectConvex functions
dc.subjectPost-quantum calculus
dc.subjectSimpsonÕs inequalities
dc.titleOn some new simpsonÕs formula type inequalities for convex functions in post-quantum calculus
dc.typeArticle
mods.location.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85121500088&doi=10.3390%2fsym13122419&partnerID=40&md5=0b06e5c65ca54fa2699b62dbff72ad50
oaire.citation.issue12
oaire.citation.volume13
Files
Collections