A CURRENT FORWARD-BACKWARD-FORWARD METHOD FOR INCLUSION PROBLEMS

dc.contributor.authorKunrada Kankam
dc.contributor.authorPrasit Cholamjiak
dc.date.accessioned2025-07-07T18:16:38Z
dc.date.available2025-07-07T18:16:38Z
dc.date.issued2025
dc.description.abstractThis research presents the projection forward-backward-forward method based on two inertials. We combine linesearch and self-adaptive stepsize to select the stepsize in the proposed method. The weak convergence is established under mild assumptions without the assumptions on the Lipschitz constants. Finally, numerical experiments are performed, which explain the effectiveness of the proposed method. We provide practical applications in image inpainting problem. The results of our numerical analysis conclusively indicate that the proposed method exhibits greater efficiency than those previously recommended in literature. © 2025 American Institute of Mathematical Sciences. All rights reserved.
dc.identifier.citationDiscrete and Continuous Dynamical Systems - Series S
dc.identifier.doi10.3934/dcdss.2024116
dc.identifier.issn19371632
dc.identifier.scopus2-s2.0-105008722493
dc.identifier.urihttps://repository.dusit.ac.th/handle/123456789/7310
dc.languageEnglish
dc.publisherAmerican Institute of Mathematical Sciences
dc.rights.holderScopus
dc.subjectForward-backward-forward method
dc.subjectimage inpainting
dc.subjectinertial method
dc.subjectmonotone inclusion
dc.titleA CURRENT FORWARD-BACKWARD-FORWARD METHOD FOR INCLUSION PROBLEMS
dc.typeArticle
mods.location.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-105008722493&doi=10.3934%2fdcdss.2024116&partnerID=40&md5=d1a8499044f3332edfff96abe11984df
oaire.citation.endPage2396
oaire.citation.issue9
oaire.citation.startPage2379
oaire.citation.volume18
Files
Collections