Existence and Uniqueness of Solutions for Fractional-Differential Equation with Boundary Condition Using Nonlinear Multi-Fractional Derivatives

dc.contributor.authorChanon Promsakon
dc.contributor.authorIntesham Ansari
dc.contributor.authorMecieu Wetsah
dc.contributor.authorAnoop Kumar
dc.contributor.authorKulandhaivel Karthikeyan
dc.contributor.authorThanin Sitthiwirattham
dc.contributor.correspondenceT. Sitthiwirattham; Research Group for Fractional Calculus Theory and Applications, Science and Technology Research Institute, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand; email: thanin_sit@dusit.ac.th; K. Karthikeyan; Department of Mathematics and Centre for Research and Development, Kpr Institute of Engineering and Technology, Coimbatore, Tamil Nadu, 641-407, India; email: karthi_phd2010@yahoo.co.in
dc.date.accessioned2025-03-10T07:34:20Z
dc.date.available2025-03-10T07:34:20Z
dc.date.issued2024
dc.description.abstractIn this article the existence as well as the uniqueness (EU) of the solutions for nonlinear multiorder fractional-differential equations (FDE) with local boundary conditions and fractional derivatives of different orders (Caputo and Riemann-Liouville) are covered. The existence result is derived from Krasnoselskii's fixed point theorem and its uniqueness is shown using the Banach contraction mapping principle. To illustrate the reliability of the results, two examples are given. © 2024 Chanon Promsakon et al.
dc.identifier.citationMathematical Problems in Engineering
dc.identifier.doi10.1155/2024/6844686
dc.identifier.issn1024123X
dc.identifier.scopus2-s2.0-85185883555
dc.identifier.urihttps://repository.dusit.ac.th//handle/123456789/4469
dc.languageEnglish
dc.publisherHindawi Limited
dc.rightsAll Open Access; Gold Open Access
dc.rights.holderScopus
dc.titleExistence and Uniqueness of Solutions for Fractional-Differential Equation with Boundary Condition Using Nonlinear Multi-Fractional Derivatives
dc.typeArticle
mods.location.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85185883555&doi=10.1155%2f2024%2f6844686&partnerID=40&md5=d3a9a6675e96545379376060a206ca88
oaire.citation.volume2024
Files
Collections