Haar Collocations Method for Nonlinear Variable Order Fractional Integro-Differential Equations

dc.contributor.authorRohul Amin
dc.contributor.authorThanin Sitthiwirattham
dc.contributor.authorMuhammad Bilal Hafeez
dc.contributor.authorWojciech Sumelka
dc.contributor.correspondenceT. Sitthiwirattham; Mathematics Department, Faculty of Science and Technology, Suan Dusit University, Bangkok, Thailand; email: thanin_sit@dusit.ac.th
dc.date.accessioned2025-03-10T07:34:44Z
dc.date.available2025-03-10T07:34:44Z
dc.date.issued2023
dc.description.abstractVariable order integrations and differentiations are the natural extensions of the corresponding usual operators. The idea was first introduced by Samko and his coauthors. Due to the importance of the said area, we consider a class of fractional integro-differential equations(FIDEs) under the variable order (VO) differentiation. Our investigation is related to numerical solution. For the said results, we utilize Haar collocation method (HCM). The concerned method has a convergence rate of order two and itself based on BroydenÕs technique. Various examples are testified by using the said techniques. Numerical interpretations are done by using Matlab. © 2023 NSP Natural Sciences Publishing Cor.
dc.identifier.citationProgress in Fractional Differentiation and Applications
dc.identifier.doi10.18576/pfda/090203
dc.identifier.issn23569336
dc.identifier.scopus2-s2.0-85152469544
dc.identifier.urihttps://repository.dusit.ac.th//handle/123456789/4540
dc.languageEnglish
dc.publisherNatural Sciences Publishing
dc.rights.holderScopus
dc.subjectFractional calculus
dc.subjectGauss elimination method
dc.subjectHaar wavelet
dc.subjectnumerical approximation
dc.titleHaar Collocations Method for Nonlinear Variable Order Fractional Integro-Differential Equations
dc.typeArticle
mods.location.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85152469544&doi=10.18576%2fpfda%2f090203&partnerID=40&md5=b22f0f851eb507aab50b805b153e2c41
oaire.citation.endPage229
oaire.citation.issue2
oaire.citation.startPage223
oaire.citation.volume9
Files
Collections