New Forms of the Open Newton-Cotes-Type Inequalities for a Family of the Quantum Differentiable Convex Functions

dc.contributor.authorJarunee Soontharanon
dc.contributor.authorMuhammad Aamir Ali
dc.contributor.authorShahram Rezapour
dc.contributor.authorMuhammad Toseef
dc.contributor.authorThanin Sitthiwirattham
dc.contributor.correspondenceS. Rezapour; Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran; email: rezapourshahram@yahoo.ca
dc.date.accessioned2025-03-10T07:22:48Z
dc.date.available2025-03-10T07:22:48Z
dc.date.issued2025
dc.description.abstractThe main objective of this paper is to establish some new inequalities related to the open Newton-Cotes formulas in the setting of q-calculus. We establish a quantum integral identity first and then prove the desired inequalities for q-differentiable convex functions. These inequalities are useful for determining error bounds for the open Newton-Cotes formulas in both classical and q-calculus. This work distinguishes itself from existing studies by employing quantum operators, leading to sharper and more precise error estimates. These results extend the applicability of Newton-Cotes methods to quantum calculus, offering a novel contribution to the numerical analysis of convex functions. Finally, we provide mathematical examples and computational analysis to validate the newly established inequalities. © 2025 University of Maragheh. All rights reserved.
dc.identifier.citationSahand Communications in Mathematical Analysis
dc.identifier.doi10.22130/scma.2024.2036770.1826
dc.identifier.issn23225807
dc.identifier.scopus2-s2.0-85213877836
dc.identifier.urihttps://repository.dusit.ac.th//handle/123456789/4440
dc.languageEnglish
dc.publisherUniversity of Maragheh
dc.rights.holderScopus
dc.subjectConvex Functions
dc.subjectFractional inequalities
dc.subjectOpen Newton-Cotes Formulas
dc.subjectq-Calculus
dc.titleNew Forms of the Open Newton-Cotes-Type Inequalities for a Family of the Quantum Differentiable Convex Functions
dc.typeArticle
mods.location.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85213877836&doi=10.22130%2fscma.2024.2036770.1826&partnerID=40&md5=fb82522450a5f9c604f49a199666d1d2
oaire.citation.endPage219
oaire.citation.issue1
oaire.citation.startPage205
oaire.citation.volume22
Files
Collections