Inertial iterative method for solving equilibrium problems and fixed point problems

dc.contributor.authorMin Li
dc.contributor.authorZhongbing Xie
dc.contributor.authorPrasit Cholamjiak
dc.contributor.authorKunrada Kankam
dc.contributor.correspondenceZ. Xie; School of Mathematics and Statistics, Wuhan University, Wuhan, 430072, China; email: xzbmath@163.com
dc.date.accessioned2025-03-10T07:34:21Z
dc.date.available2025-03-10T07:34:21Z
dc.date.issued2024
dc.description.abstractIn this paper, we present an inertial iterative method for solving pseudomonotone equilibrium and fixed point problems in Banach spaces. Under appropriate conditions, we improve the convergence efficiency of our proposed algorithm by introducing a new step size and iteration rule, and further derive a strong convergence theorem. Finally, we demonstrate through numerical experiments that our new algorithm compares favourably with existing methods in terms of convergence behaviour. © 2024, The Author(s) under exclusive licence to Sociedade Brasileira de Matem‡tica Aplicada e Computacional.
dc.identifier.citationComputational and Applied Mathematics
dc.identifier.doi10.1007/s40314-024-02597-7
dc.identifier.issn22383603
dc.identifier.scopus2-s2.0-85183747160
dc.identifier.urihttps://repository.dusit.ac.th//handle/123456789/4501
dc.languageEnglish
dc.publisherSpringer Nature
dc.rights.holderScopus
dc.subjectBanach space
dc.subjectEquilibrium problem
dc.subjectFixed point
dc.subjectStrong convergence
dc.titleInertial iterative method for solving equilibrium problems and fixed point problems
dc.typeArticle
mods.location.urlhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85183747160&doi=10.1007%2fs40314-024-02597-7&partnerID=40&md5=140c19836a51ea670f096c08bcf9356d
oaire.citation.issue1
oaire.citation.volume43
Files
Collections