ธุรกิจอัจฉริยะและการวิเคราะห์ข้อมูลขนาดใหญ่

dc.contributor.authorมณีรัตน์ ภารนันท์
dc.date.accessioned2025-05-16T06:08:17Z
dc.date.available2025-05-16T06:08:17Z
dc.date.issued2025
dc.descriptionตำราวิชาธุรกิจอัจฉริยะและการวิเคราะห์ข้อมูลขนาดใหญ่ (Business Intelligence and Big Data Analytics) นี้ได้แบ่งเนื้อหาเป็น 12 บท รายวิชานี้มุ่งเน้นให้ผู้เรียนมีความรู้ความสามารถด้านการ วิเคราะห์และนำเสนอข้อมูลด้วยกราฟเพื่อสนับสนุนการทำธุรกิจในยุคดิจิทัล เนื้อหา บทที่ 1 ความหมายและหลักการทำงานของธุรกิจอัจฉริยะ เครื่องมือในการสร้างและแหล่งข้อมูลสำหรับวิเคราะห์ข้อมูลธุรกิจอัจฉริยะ กราฟที่เหมาะสมกับการแสดงข้อมูลแต่ละประเภท ตัวอย่างงานวิจัยการประยุกต์ใช้ Google Chart API บทที่ 2 การหา Insights น่าสนใจจากข้อมูลด้วย Pivot Table ใน Google Sheet และการวิเคราะห์ RFM โครงสร้างชุดข้อมูลธุรกิจขายสินค้าออนไลน์ วิเคราะห์จัดกลุ่มข้อมูลพฤติกรรมของผู้บริโภคด้วยหลักการ RFM ตัวอย่างงานวิจัยการพัฒนาระบบธุรกิจอัจฉริยะจัดโปรโมชันส่งเสริมการตลาด บทที่ 3 การใช้ Looker Studio สร้าง Dashboard แสดงข้อมูลทางสถิติของธุรกิจการสร้าง Interactive Dashboard แสดงข้อมูลทางผลประกอบการของธุรกิจ บทที่ 4 การใช้ Power BI สร้าง Dashboard แสดงข้อมูลผลการดำเนินงานธุรกิจ การสร้างกราฟเส้นพยากรณ์ยอดขายสินค้าในอนาคต เทคนิค Time Series การสร้างกราฟจุดจัดกลุ่มข้อมูลสินค้ายอดฮิต เทคนิค K-Means บทที่ 5 การใช้ Tableau สร้าง Dashboard แสดงข้อมูลผลการดำเนินงานธุรกิจ บทที่ 6 สถาปัตยกรรมของข้อมูลขนาดใหญ่ (Big Data) องค์ประกอบ วิวัฒนาการของข้อมูลขนาดใหญ่ วิธีสร้างแหล่งเก็บข้อมูลขนาดใหญ่ เครื่องมือ BigQuery บทที่ 7 เหมืองข้อมูล (Data Mining) และคลังข้อมูล (Data Warehouse) การจัดหมวดหมู่ข้อมูล (Classification) การจัดกลุ่มข้อมูล (Clustering) การสร้างกฎความสัมพันธ์ข้อมูล (Association Rule) การพยากรณ์ข้อมูล (Forecasting) บทที่ 8 การทำเหมืองข้อมูลด้วยโปรแกรม WEKA ด้วยโมเดล Classify อัลกอริทึม NaiveBayes อัลกอริทึม Decision Tree โมเดล Cluster อัลกอริทึม SimpleKMeans โมเดล Association อัลกอริทึม Appriori และโมเดล Forecast อัลกอริทึม Time Series บทที่ 9 การทำเหมืองข้อมูลด้วยโปรแกรม RapidMiner Studio การวิเคราะห์ข้อมูลด้วยอัลกอริทึม DecisionTree LinearRegression NeuralNetwork NaiveBayes SupportVectorMachine FP-Growth KMeans และ Time Series การติดตั้ง Weka ใน RapidMiner Studio เพื่อวิเคราะห์ข้อมูลด้วย Appriori การวิเคราะห์เหมืองข้อความ (Text Mining) ด้วย Wordcloud บทที่ 10 เครื่องมือMatplotlib และ Scikit-learn ภาษา Python บทที่ 11 การพัฒนาเว็บธุรกิจอัจฉริยะด้วยเทมเพลต AdminLTE และงานวิจัยที่เกี่ยวกับการพัฒนาเว็บธุรกิจอัจฉริยะและการวิเคราะห์ข้อมูลขนาดใหญ่ที่ได้จาก Sensor IOT รวบรวมข้อมูลสภาพอากาศเพื่อสนับสนุนธุรกิจเกษตรสมุนไพรโมเดลสวนไผ่ไฮเทคระบบสนับสนุนการผลิตสินค้าเครื่องสำอางสมุนไพรสวนไผ่ไฮเทค บทที่ 12 การวิเคราะห์ข้อมูลจากแหล่งข้อมูลภายนอก การใช้ตลาดนำการผลิต Google Trend, Google Analytics, Facebook Fanpage Insights, Youtube Studio, Tiktok Social Analytics & Listening, Blogger Analytics
dc.identifier.urihttps://repository.dusit.ac.th/handle/123456789/6757
dc.language.isoth
dc.publisherมหาวิทยาลัยเทคโนโลยีราชมงคลตะวันออก
dc.subjectธุรกิจอัจฉริยะ
dc.subjectการวิเคราะห์ข้อมูลขนาดใหญ่
dc.subjectBusiness Intelligence
dc.subjectBig Data Analytics
dc.subjectBig Data
dc.subjectการวิเคราะห์ข้อมูล
dc.subjectคลังข้อมูล
dc.titleธุรกิจอัจฉริยะและการวิเคราะห์ข้อมูลขนาดใหญ่
dc.title.alternativeBusiness Intelligence and Big Data Analytics
dc.typeBook
mods.location.urlhttps://drive.google.com/file/d/16QYo70nfXed3eaC_SiGwwMA1NO64BtEf/view
Files
Original bundle
Now showing 1 - 1 of 1
Default Image
Name:
SPC_BOOK_16_05_2568_001.pdf
Size:
82.53 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
Default Image
Name:
license.txt
Size:
371 B
Format:
Item-specific license agreed to upon submission
Description:
Collections