Fractional ostrowski type inequalities for differentiable harmonically convex functions
dc.contributor.author | Thanin Sitthiwirattham | |
dc.contributor.author | Muhammad Aamir Ali | |
dc.contributor.author | HŸseyin Budak | |
dc.contributor.author | Sotiris K. Ntouyas | |
dc.contributor.author | Chanon Promsakon | |
dc.contributor.correspondence | M.A. Ali; Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, 210023, China; email: mahr.muhammad.aamir@gmail.com | |
dc.date.accessioned | 2025-03-10T07:35:06Z | |
dc.date.available | 2025-03-10T07:35:06Z | |
dc.date.issued | 2022 | |
dc.description.abstract | In this paper, we prove some new Ostrowski type inequalities for differentiable harmonically convex functions using generalized fractional integrals. Since we are using generalized fractional integrals to establish these inequalities, therefore we obtain some new inequalities of Ostrowski type for Riemann-Liouville fractional integrals and k-Riemann-Liouville fractional integrals in special cases. Finally, we give some applications to special means of real numbers for newly established inequalities. © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0). | |
dc.identifier.citation | AIMS Mathematics | |
dc.identifier.doi | 10.3934/math.2022217 | |
dc.identifier.issn | 24736988 | |
dc.identifier.scopus | 2-s2.0-85121026239 | |
dc.identifier.uri | https://repository.dusit.ac.th//handle/123456789/4632 | |
dc.language | English | |
dc.publisher | American Institute of Mathematical Sciences | |
dc.rights | All Open Access; Gold Open Access | |
dc.rights.holder | Scopus | |
dc.subject | Generalized fractional integrals | |
dc.subject | Harmonically convex functions | |
dc.subject | Hermite-Hadamard inequalities | |
dc.title | Fractional ostrowski type inequalities for differentiable harmonically convex functions | |
dc.type | Article | |
mods.location.url | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121026239&doi=10.3934%2fmath.2022217&partnerID=40&md5=c9f11a66ad5eaa32d7531095de0acd3e | |
oaire.citation.endPage | 3958 | |
oaire.citation.issue | 3 | |
oaire.citation.startPage | 3939 | |
oaire.citation.volume | 7 |