Repository logo
  • English
  • ภาษาไทย
  • Log In
    Have you forgotten your password?
header.image.logo
  • English
  • ภาษาไทย
  • Log In
    Have you forgotten your password?
  • Communities & Collections
  • All of SDU IR
    • By Issue Date
    • By Author
    • By Title
    • By Subject
    • By Subject Category
  • Statistics
  • About Us
    • Guidelines
    • Send Feedback
  1. Home
  2. Browse by Author

Browsing by Author "Sorasutee Buapool"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Default Image
    Item
    A Study of the Optimal Conditions for Extracting and Precipitating Silica from Rice Husk Using the Hydrothermal Method in a Base Medium
    (Research and Development Institute Suan Dusit University, 2024) Orapin Komutiban; Jantharat Wutisatwongkul; Sorasutee Buapool; Khwunjit Itsarasook; Piyanuch Prompamorn; Jittarawadee Tanghiranra; Piyaporn Waranusantigul; J. Wutisatwongkul; Faculty of Science and Technology, Suan Dusit University, Bangkok, 10700, Thailand; email: jantharat_wut@dusit.ac.th
    This research investigated the extraction and precipitation methods of silica from rice husk using hydrothermal treatment under basic conditions. It was observed that by subjecting raw rice husk and black rice husk ash to burnt at a temperature of 700¡C for 6 hr raw rice husk yielded 10.68%, while black rice husk yielded 85.40%. The optimal condition for extracting silica is 1 molar of sodium hydroxide at a temperature of 100¡C for 6 hr. Silica extracted from raw materials that have undergone acid pretreatment yields a higher quantity compared to silica from untreated raw materials. However, the raw rice husk, burnt raw rice husk, black rice husk ash and burnt black rice husk ash have silica % of 16.20, 77.60, 63.10 and 89.0, respectively. When the extracted silica was analyzed for its physical characteristics using an inverted microscope, it was observed that silica subjected to acid pretreatment exhibits uniformly sized particles. The examination of particle size using the extraction method revealed that the silica particles were smaller than 53 _m and when all extracted silica was analyzed for functional groups using the FT-IR technique, the siloxane group (Si-O-Si) was found in the wavenumber range of 1,090-801 cm-_. Additionally, the hydroxyl group (-OH) was observed at the wavenumber of 3,400 cm-_. After conducting BrunauerÐEmmettÐTeller Analysis (BET analysis) on silica obtained from burnt rice husk and burnt black rice husk ash, both untreated and treated with HCl, it was found that the pore diameter of the extracted silica ranged from 8.14 to 19.15 nm. This suggests that the silica possesses mesoporous characteristics. Furthermore, the acid-leached silica exhibited a decrease in particle size and an increase in surface area. Specifically, the silica derived from burnt rice husk and treated with HCl demonstrated particle size and surface area values that closely resembled those of commercial-grade silica. When studying the effectiveness of silica in adsorbing methylene blue, the findings showed that the extracted silica demonstrates better adsorption capability for methy lene blue compared to commercial silica. The adsorption values ranged from 1302.49 to 1706.35 mg MB/g, representing 65.78-86.17%. From the investigation of the isotherm for methylene blue adsorption with the extracted silica, it is evident that the adsorption conforms to Freundlich model, indicating a multilayer adsorption behaviour. The method of extracting and precipitating silica through hydrothermal treatment under basic conditions proves to be an effective approach for preparing micro-sized silica particles. © 2024, Research and Development Institute Suan Dusit University. All rights reserved.
  • Default Image
    Item
    A Study of the Optimal Conditions for Extracting and Precipitating Silica from Rice Husk Using the Hydrothermal Method in a Base Medium
    (Graphicsite, 2024-04-30) Orapin Komutiban; Jantharat Wutisatwongkul; Sorasutee Buapool; Khwunjit Itsarasook; Piyanuch Prompamorn; Jittarawadee Tanghiranra; Piyaporn Waranusantigul
    This research investigated the extraction and precipitation methods of silica from rice husk using hydrothermal treatment under basic conditions. It was observed that by subjecting raw rice husk and black rice husk ash to burnt at a temperature of 700°C for 6 hr raw rice husk yielded 10.68%, while black rice husk yielded 85.40%. The optimal condition for extracting silica is 1 molar of sodium hydroxide at a temperature of 100°C for 6 hr. Silica extracted from raw materials that have undergone acid pretreatment yields a higher quantity compared to silica from untreated raw materials. However, the raw rice husk, burnt raw rice husk, black rice husk ash and burnt black rice husk ash have silica % of 16.20, 77.60, 63.10 and 89.0, respectively. When the extracted silica was analyzed for its physical characteristics using an inverted microscope, it was observed that silica subjected to acid pretreatment exhibits uniformly sized particles. The examination of particle size using the extraction method revealed that the silica particles were smaller than 53 μm and when all extracted silica was analyzed for functional groups using the FT-IR technique, the siloxane group (Si-O-Si) was found in the wavenumber range of 1,090-801 cm-¹. Additionally, the hydroxyl group (-OH) was observed at the wavenumber of 3,400 cm-¹. After conducting Brunauer–Emmett–Teller Analysis (BET analysis) on silica obtained from burnt rice husk and burnt black rice husk ash, both untreated and treated with HCl, it was found that the pore diameter of the extracted silica ranged from 8.14 to 19.15 nm. This suggests that the silica possesses mesoporous characteristics. Furthermore, the acid-leached silica exhibited a decrease in particle size and an increase in surface area. Specifically, the silica derived from burnt rice husk and treated with HCl demonstrated particle size and surface area values that closely resembled those of commercial-grade silica. When studying the effectiveness of silica in adsorbing methylene blue, the findings showed that the extracted silica demonstrates better adsorption capability for methy lene blue compared to commercial silica. The adsorption values ranged from 1302.49 to 1706.35 mg MB/g, representing 65.78-86.17%. From the investigation of the isotherm for methylene blue adsorption with the extracted silica, it is evident that the adsorption conforms to Freundlich model, indicating a multilayer adsorption behaviour. The method of extracting and precipitating silica through hydrothermal treatment under basic conditions proves to be an effective approach for preparing micro-sized silica particles.
  • Default Image
    Item
    Exploring Water Hyacinth for Sustainable Sound Absorber
    (Korean Society of Wood Science Technology, 2025) Siwarut Jullaprom; Sorasutee Buapool; Jantharat Wutisatwongkul; S. Buapool; Department of Sustainable Industrial Management Engineering, Faculty of Engineering, Rajamangala University of Technology Phra Nakhon, Bangkok, 10800, Thailand; email: sorasutee.b@rmutp.ac.th
    The construction industry has increasingly emphasized the importance of sustainable materials. These sustainable materials offer insights into the development of effective and ecofriendly acoustic materials. This study explored the potential of water hyacinths for sound absorption performance. An impedance tube test was conducted to analyze the sound absorption coefficient. The specimens were fabricated by spraying dried water hyacinth stalks with a polyvinyl alcohol adhesive, allowing them to dry and then cutting them into different thicknesses for measurement. A systematic analysis revealed that the sound absorption coefficients improved with increasing thickness and air-gap depth. The specimen reached its highest sound absorption coefficient value of 0.73 at 500 Hz with a thickness of 10 mm and an air gap depth of 20 mm. A greater thickness significantly enhanced the sound absorption, and additional air-gap depths further improved it. These factors correlated with higher noise reduction coefficient values (0.24 to 0.41), highlighting water hyacinth's suitability as a sound-absorbing material. Water hyacinth offers excellent sound absorption and aesthetic value. © 2025 The Korean Society of Wood Science & Technology.

มหาวิทยาลัยสวนดุสิต copyright © 2002-2025

  • Cookie settings
  • Privacy policy
  • End User Agreement