Browsing by Author "Daruna Champakaew"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Chemical constituents and combined larvicidal effects of selected essential oils against anopheles cracens (Diptera: Culicidae)(Hindawi Limited, 2012) Jitrawadee Intirach; Anuluck Junkum; Benjawan Tuetun; Wej Choochote; Udom Chaithong; Atchariya Jitpakdi; Doungrat Riyong; Daruna Champakaew; Benjawan Pitasawat; A. Junkum; Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; email: anjunkum@med.cmu.ac.thA preliminary study on larvicidal activity against laboratory-colonized Anopheles cracens mosquitos revealed that five of ten plant oils at concentration of 100ppm showed 95-100% larval mortality. The essential oils of five plants, including Piper sarmentosum, Foeniculum vulgare, Curcuma longa, Myristica fragrans, and Zanthoxylum piperitum, were then selected for chemical analysis, dose-response larvicidal experiments, and combination-based bioassays. Chemical compositions analyzed by gas chromatography coupled to mass spectrometry demonstrated that the main component in the oil derived from P. sarmentosum, F. vulgare, C. longa, M. fragrans, and Z. piperitum was croweacin (71.01), anethole (63.00), ar-turmerone (30.19), safrole (46.60), and 1,8-cineole (21.27), respectively. For larvicidal bioassay, all five essential oils exerted promising efficacy in a dose-dependent manner and different performances on A. cracens after 24 hours of exposure. The strongest larvicidal potential was established from P. sarmentosum, followed by F. vulgare, C. longa, M. fragrans, and Z. piperitum, with LC50 values of 16.03, 32.77, 33.61, 40.00, and 63.17ppm, respectively. Binary mixtures between P. sarmentosum, the most effective oil, and the others at the highest ratio were proved to be highly efficacious with a cotoxicity coefficient value greater than 100, indicating synergistic activity. Results of mixed formulations of different essential oils generating synergistic effects may prove helpful in developing effective, economical, and ecofriendly larvicides, as favorable alternatives for mosquito management. © Copyright 2012 Jitrawadee Intirach et al.Item Remarkable repellency of Ligusticum sinense (Umbelliferae), a herbal alternative against laboratory populations of Anopheles minimus and Aedes aegypti (Diptera: Culicidae)(BioMed Central, 2015) Rukpong Sanghong; Anuluck Junkum; Udom Chaithong; Atchariya Jitpakdi; Doungrat Riyong; Benjawan Tuetun; Daruna Champakaew; Jitrawadee Intirach; Roongtawan Muangmoon; Arpaporn Chansang; Benjawan Pitasawat; A. Junkum; Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; email: anuluck.j@cmu.ac.thAbstract Background: For personal protection against mosquito bites, user-friendly natural repellents, particularly from plant origin, are considered as a potential alternative to applications currently based on synthetics such as DEET, the standard chemical repellent. This study was carried out in Thailand to evaluate the repellency of Ligusticum sinense hexane extract (LHE) against laboratory Anopheles minimus and Aedes aegypti, the primary vectors of malaria and dengue fever, respectively. Methods: Repellent testing of 25% LHE against the two target mosquitoes; An. minimus and Ae. aegypti, was performed and compared to the standard repellent, DEET, with the assistance of six human volunteers of either sex under laboratory conditions. The physical and biological stability of LHE also was determined after keeping it in conditions that varied in temperature and storage time. Finally, LHE was analysed chemically using the qualitative GC/MS technique in order to demonstrate a profile of chemical constituents. Results: Ethanol preparations of LHE, with and without 5% vanillin, demonstrated a remarkably effective performance when compared to DEET in repelling both An. minimus and Ae. aegypti. While 25% LHE alone provided median complete-protection times against An. minimus and Ae. aegypti of 11.5 (9.0-14.0) hours and 6.5 (5.5-9.5) hours, respectively, the addition of 5% vanillin increased those times to 12.5 (9.0-16.0) hours and 11.0 (7.0-13.5) hours, respectively. Correspondingly, vanillin added to 25% DEET also extended the protection times from 11.5 (10.5-15.0) hours to 14.25 (11.0-18.0) hours and 8.0 (5.0-9.5) hours to 8.75 (7.5-11.0) hours against An. minimus and Ae. aegypti, respectively. No local skin reaction such as rash, swelling or irritation was observed during the study period. Although LHE samples kept at ambient temperature (21-35�C), and 45�C for 1, 2 and 3 months, demonstrated similar physical characteristics, such as similar viscosity and a pleasant odour, to those that were fresh and stored at 4�C, their colour changed from light- to dark-brown. Interestingly, repellency against Ae. aegypti of stored LHE was presented for a period of at least 3 months, with insignificantly varied efficacy. Chemical analysis revealed that the main components of LHE were 3-N-butylphthalide (31.46%), 2, 5-dimethylpyridine (21.94%) and linoleic acid (16.41%), constituting 69.81% of all the extract composition. Conclusions: LHE with proven repellent efficacy, no side effects on the skin, and a rather stable state when kept in varied conditions is considered to be a potential candidate for developing a new natural alternative to DEET, or an additional weapon for integrated vector control when used together with other chemicals/measures. � 2015 Sanghong et al.